Inheritance #

PackedByteArray




Table of contents

PackedByteArray #

int, builtin_classes

A packed array of bytes.

An array specifically designed to hold bytes. Packs data tightly, so it saves memory for large array sizes.

PackedByteArray also provides methods to encode/decode various types to/from bytes. The way values are encoded is an implementation detail and shouldn't be relied upon when interacting with external apps.

Note: Packed arrays are always passed by reference. To get a copy of an array that can be modified independently of the original array, use duplicate. This is not the case for built-in properties and methods. The returned packed array of these are a copies, and changing it will not affect the original value. To update a built-in property you need to modify the returned array, and then assign it to the property again.

Members #

Methods #

func append(value: int) -> bool#

Appends an element at the end of the array (alias of push_back).

func append_array(array: PackedByteArray) -> void#

Appends a PackedByteArray at the end of this array.

func bsearch(before: bool = true) -> int#

Finds the index of an existing value (or the insertion index that maintains sorting order, if the value is not yet present in the array) using binary search. Optionally, a before specifier can be passed. If false, the returned index comes after all existing entries of the value in the array.

Note: Calling bsearch on an unsorted array results in unexpected behavior.

func clear() -> void#

Clears the array. This is equivalent to using resize with a size of 0.

const func compress(compression_mode: int = 0) -> PackedByteArray#

Returns a new PackedByteArray with the data compressed. Set the compression mode using one of FileAccess.CompressionMode's constants.

const func count(value: int) -> int#

Returns the number of times an element is in the array.

const func decode_double(byte_offset: int) -> float#

Decodes a 64-bit floating-point number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0.0 if a valid number can't be decoded.

const func decode_float(byte_offset: int) -> float#

Decodes a 32-bit floating-point number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0.0 if a valid number can't be decoded.

const func decode_half(byte_offset: int) -> float#

Decodes a 16-bit floating-point number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0.0 if a valid number can't be decoded.

const func decode_s8(byte_offset: int) -> int#

Decodes a 8-bit signed integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_s16(byte_offset: int) -> int#

Decodes a 16-bit signed integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_s32(byte_offset: int) -> int#

Decodes a 32-bit signed integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_s64(byte_offset: int) -> int#

Decodes a 64-bit signed integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_u8(byte_offset: int) -> int#

Decodes a 8-bit unsigned integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_u16(byte_offset: int) -> int#

Decodes a 16-bit unsigned integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_u32(byte_offset: int) -> int#

Decodes a 32-bit unsigned integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_u64(byte_offset: int) -> int#

Decodes a 64-bit unsigned integer number from the bytes starting at byte_offset. Fails if the byte count is insufficient. Returns 0 if a valid number can't be decoded.

const func decode_var(allow_objects: bool = false) -> Variant#

Decodes a Variant from the bytes starting at byte_offset. Returns null if a valid variant can't be decoded or the value is Object-derived and allow_objects is false.

const func decode_var_size(allow_objects: bool = false) -> int#

Decodes a size of a Variant from the bytes starting at byte_offset. Requires at least 4 bytes of data starting at the offset, otherwise fails.

const func decompress(compression_mode: int = 0) -> PackedByteArray#

Returns a new PackedByteArray with the data decompressed. Set buffer_size to the size of the uncompressed data. Set the compression mode using one of FileAccess.CompressionMode's constants.

Note: Decompression is not guaranteed to work with data not compressed by Godot, for example if data compressed with the deflate compression mode lacks a checksum or header.

const func decompress_dynamic(compression_mode: int = 0) -> PackedByteArray#

Returns a new PackedByteArray with the data decompressed. Set the compression mode using one of FileAccess.CompressionMode's constants. This method only accepts brotli, gzip, and deflate compression modes.

This method is potentially slower than decompress, as it may have to re-allocate its output buffer multiple times while decompressing, whereas decompress knows it's output buffer size from the beginning.

GZIP has a maximal compression ratio of 1032:1, meaning it's very possible for a small compressed payload to decompress to a potentially very large output. To guard against this, you may provide a maximum size this function is allowed to allocate in bytes via max_output_size. Passing -1 will allow for unbounded output. If any positive value is passed, and the decompression exceeds that amount in bytes, then an error will be returned.

Note: Decompression is not guaranteed to work with data not compressed by Godot, for example if data compressed with the deflate compression mode lacks a checksum or header.

func duplicate() -> PackedByteArray#

Creates a copy of the array, and returns it.

func encode_double(value: float) -> void#

Encodes a 64-bit floating-point number as bytes at the index of byte_offset bytes. The array must have at least 8 bytes of allocated space, starting at the offset.

func encode_float(value: float) -> void#

Encodes a 32-bit floating-point number as bytes at the index of byte_offset bytes. The array must have at least 4 bytes of space, starting at the offset.

func encode_half(value: float) -> void#

Encodes a 16-bit floating-point number as bytes at the index of byte_offset bytes. The array must have at least 2 bytes of space, starting at the offset.

func encode_s8(value: int) -> void#

Encodes a 8-bit signed integer number (signed byte) at the index of byte_offset bytes. The array must have at least 1 byte of space, starting at the offset.

func encode_s16(value: int) -> void#

Encodes a 16-bit signed integer number as bytes at the index of byte_offset bytes. The array must have at least 2 bytes of space, starting at the offset.

func encode_s32(value: int) -> void#

Encodes a 32-bit signed integer number as bytes at the index of byte_offset bytes. The array must have at least 4 bytes of space, starting at the offset.

func encode_s64(value: int) -> void#

Encodes a 64-bit signed integer number as bytes at the index of byte_offset bytes. The array must have at least 8 bytes of space, starting at the offset.

func encode_u8(value: int) -> void#

Encodes a 8-bit unsigned integer number (byte) at the index of byte_offset bytes. The array must have at least 1 byte of space, starting at the offset.

func encode_u16(value: int) -> void#

Encodes a 16-bit unsigned integer number as bytes at the index of byte_offset bytes. The array must have at least 2 bytes of space, starting at the offset.

func encode_u32(value: int) -> void#

Encodes a 32-bit unsigned integer number as bytes at the index of byte_offset bytes. The array must have at least 4 bytes of space, starting at the offset.

func encode_u64(value: int) -> void#

Encodes a 64-bit unsigned integer number as bytes at the index of byte_offset bytes. The array must have at least 8 bytes of space, starting at the offset.

func encode_var(allow_objects: bool = false) -> int#

Encodes a Variant at the index of byte_offset bytes. A sufficient space must be allocated, depending on the encoded variant's size. If allow_objects is false, Object-derived values are not permitted and will instead be serialized as ID-only.

func fill(value: int) -> void#

Assigns the given value to all elements in the array. This can typically be used together with resize to create an array with a given size and initialized elements.

const func find(from: int = 0) -> int#

Searches the array for a value and returns its index or -1 if not found. Optionally, the initial search index can be passed.

const func get(index: int) -> int#

Returns the byte at the given index in the array. This is the same as using the [] operator (arrayindex).

const func get_string_from_ascii() -> String#

Converts ASCII/Latin-1 encoded array to String. Fast alternative to get_string_from_utf8 if the content is ASCII/Latin-1 only. Unlike the UTF-8 function this function maps every byte to a character in the array. Multibyte sequences will not be interpreted correctly. For parsing user input always use get_string_from_utf8. This is the inverse of String.to_ascii_buffer.

const func get_string_from_utf8() -> String#

Converts UTF-8 encoded array to String. Slower than get_string_from_ascii but supports UTF-8 encoded data. Use this function if you are unsure about the source of the data. For user input this function should always be preferred. Returns empty string if source array is not valid UTF-8 string. This is the inverse of String.to_utf8_buffer.

const func get_string_from_utf16() -> String#

Converts UTF-16 encoded array to String. If the BOM is missing, system endianness is assumed. Returns empty string if source array is not valid UTF-16 string. This is the inverse of String.to_utf16_buffer.

const func get_string_from_utf32() -> String#

Converts UTF-32 encoded array to String. System endianness is assumed. Returns empty string if source array is not valid UTF-32 string. This is the inverse of String.to_utf32_buffer.

const func get_string_from_wchar() -> String#

Converts wide character (wchar_t, UTF-16 on Windows, UTF-32 on other platforms) encoded array to String. Returns empty string if source array is not valid wide string. This is the inverse of String.to_wchar_buffer.

const func has(value: int) -> bool#

Returns true if the array contains value.

const func has_encoded_var(allow_objects: bool = false) -> bool#

Returns true if a valid Variant value can be decoded at the byte_offset. Returns false otherwise or when the value is Object-derived and allow_objects is false.

const func hex_encode() -> String#

Returns a hexadecimal representation of this array as a String.

GDScript

var array = PackedByteArray([11, 46, 255])
print(array.hex_encode()) # Prints "0b2eff"

C#

byte[] array = [11, 46, 255];
GD.Print(array.HexEncode()); // Prints "0b2eff"

func insert(value: int) -> int#

Inserts a new element at a given position in the array. The position must be valid, or at the end of the array (idx == size()).

const func is_empty() -> bool#

Returns true if the array is empty.

func push_back(value: int) -> bool#

Appends an element at the end of the array.

func remove_at(index: int) -> void#

Removes an element from the array by index.

func resize(new_size: int) -> int#

Sets the size of the array. If the array is grown, reserves elements at the end of the array. If the array is shrunk, truncates the array to the new size. Calling resize once and assigning the new values is faster than adding new elements one by one.

func reverse() -> void#

Reverses the order of the elements in the array.

const func rfind(from: int = -1) -> int#

Searches the array in reverse order. Optionally, a start search index can be passed. If negative, the start index is considered relative to the end of the array.

func set(value: int) -> void#

Changes the byte at the given index.

const func size() -> int#

Returns the number of elements in the array.

const func slice(end: int = 2147483647) -> PackedByteArray#

Returns the slice of the PackedByteArray, from begin (inclusive) to end (exclusive), as a new PackedByteArray.

The absolute value of begin and end will be clamped to the array size, so the default value for end makes it slice to the size of the array by default (i.e. arr.slice(1) is a shorthand for arr.slice(1, arr.size())).

If either begin or end are negative, they will be relative to the end of the array (i.e. arr.slice(0, -2) is a shorthand for arr.slice(0, arr.size() - 2)).

func sort() -> void#

Sorts the elements of the array in ascending order.

const func to_float32_array() -> PackedFloat32Array#

Returns a copy of the data converted to a PackedFloat32Array, where each block of 4 bytes has been converted to a 32-bit float (C++ [code skip-lint]float).

The size of the input array must be a multiple of 4 (size of 32-bit float). The size of the new array will be byte_array.size() / 4.

If the original data can't be converted to 32-bit floats, the resulting data is undefined.

const func to_float64_array() -> PackedFloat64Array#

Returns a copy of the data converted to a PackedFloat64Array, where each block of 8 bytes has been converted to a 64-bit float (C++ double, Godot float).

The size of the input array must be a multiple of 8 (size of 64-bit double). The size of the new array will be byte_array.size() / 8.

If the original data can't be converted to 64-bit floats, the resulting data is undefined.

const func to_int32_array() -> PackedInt32Array#

Returns a copy of the data converted to a PackedInt32Array, where each block of 4 bytes has been converted to a signed 32-bit integer (C++ int32_t).

The size of the input array must be a multiple of 4 (size of 32-bit integer). The size of the new array will be byte_array.size() / 4.

If the original data can't be converted to signed 32-bit integers, the resulting data is undefined.

const func to_int64_array() -> PackedInt64Array#

Returns a copy of the data converted to a PackedInt64Array, where each block of 8 bytes has been converted to a signed 64-bit integer (C++ int64_t, Godot int).

The size of the input array must be a multiple of 8 (size of 64-bit integer). The size of the new array will be byte_array.size() / 8.

If the original data can't be converted to signed 64-bit integers, the resulting data is undefined.

Annotations #

Constants #

Constructors #

PackedByteArray() -> PackedByteArray #

Constructs an empty PackedByteArray.

PackedByteArray(from: PackedByteArray) -> PackedByteArray #

Constructs a PackedByteArray as a copy of the given PackedByteArray.

PackedByteArray(from: Array) -> PackedByteArray #

Constructs a new PackedByteArray. Optionally, you can pass in a generic Array that will be converted.

Enums #

Operators #

PackedByteArray != PackedByteArray -> bool#

Returns true if contents of the arrays differ.

PackedByteArray + PackedByteArray -> PackedByteArray#

Returns a new PackedByteArray with contents of right added at the end of this array. For better performance, consider using append_array instead.

PackedByteArray == PackedByteArray -> bool#

Returns true if contents of both arrays are the same, i.e. they have all equal bytes at the corresponding indices.

PackedByteArray[int] -> int#

Returns the byte at index index. Negative indices can be used to access the elements starting from the end. Using index out of array's bounds will result in an error.

Note that the byte is returned as a 64-bit int.

Signals #

Theme Items #

Tutorials #